Notes on noncommutative supersymmetric gauge theory on the fuzzy supersphere

نویسنده

  • Badis Ydri
چکیده

In these notes we review Klimč́ık’s construction of noncommutative gauge theory on the fuzzy supersphere. This theory has an exact SUSY gauge symmetry with a finite number of degrees of freedom and thus in principle it is amenable to the methods of matrix models and Monte Carlo numerical simulations. We also write down in this article a novel fuzzy supersymmetric scalar action on the fuzzy supersphere. The differential calculus on the fuzzy sphere is 3−dimensional and as a consequence a spin 1 vector field ~ C is intrinsically 3−dimensional. Each component Ci, i = 1, 2, 3, is an element of some matrix algebra MatN . Thus U(1) symmetry will be implemented by U(N) transformations. On the fuzzy sphere S N it is not possible to split the vector field ~ C in a gauge-covariant fashion into a tangent 2-dimensional gauge field and a normal scalar fluctuation. Thus in order to reduce the number of independent components from 3 to 2 we impose the gauge-covariant condition 1 2 (xiCi + Cixi) + C i √ N2 − 1 = 0. (1) xi = Li/ √ Li ( where Li are the generators of SU(2) in the irreducible representation N−1 2 of the group ) are the matrix coordinates on fuzzy S N . The action on the fuzzy sphere S 2 N is given by SN [C] = 1 4Ng2 TrF 2 ij − 1 2Ng2 ǫijkTrL [ 1 2 FijCk − i 6 [Ci, Cj]Ck ]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Note on Gauge Theory on Fuzzy Supersphere

We construct a supermatrix model whose classical background gives two-dimensional noncommutative supersphere. Quantum fluctuations around it give the supersymmetric gauge theories on the fuzzy supersphere constructed by Klimcik. This model has a parameter β which can tune masses of the particles in the model and interpolate various supersymmetric gauge theories on sphere.

متن کامل

Gauge Theory on Noncommutative Supersphere from Supermatrix Model

We construct a supermatrix model which has a classical solution representing the noncommutative (fuzzy) two-supersphere. Expanding supermatrices around the classical background, we obtain a gauge theory on a noncommutative superspace on sphere. This theory has osp(1|2) supersymmetry and u(2L+1|2L) gauge symmetry. We also discuss a commutative limit of the model keeping radius of the supersphere...

متن کامل

Fuzzy Supersphere and Supermonopole

It is well-known that coordinates of a charged particle in the presence of a monopole background become noncommutative. In this paper, we study the motion of a charged particle moving on a supersphere in the presence of a supermonopole. We construct a supermonopole by using a supersymmetric extension of the first Hopf map. We investigate algebras of angular momentum operators and supersymmetry ...

متن کامل

The Fuzzy Supersphere

We introduce the fuzzy supersphere as sequence of finite-dimensional, noncommutative Z2-graded algebras tending in a suitable limit to a dense subalgebra of the Z2-graded algebra of H∞-functions on the (2|2)-dimensional supersphere. Noncommutative analogues of the body map (to the (fuzzy) sphere) and the super-deRham complex are introduced. In particular we reproduce the equality of the superde...

متن کامل

A Proposal for a Non-perturbative Regularization of N = 2 Susy 4d Gauge Theory

In this letter we show that supersymmetry like geometry can be approximated using finite dimensional matrix models and fuzzy manifolds. In particular we propose a nonperturbative regularization of N = 2 supersymmetric U(n) gauge action in 4D. In some planar large N limits we recover exact SUSY together with the smooth geometry of Rθ. Noncommutative geometry [3] is the only known modification of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008